In what ways can a doctor use pharmacogenetics to help treat their patients?

alt = "pharmacogenetic testing"

Pharmacogenetics can be used by doctors to identify the optimal dose and/or medicine for each patient.

The right dose
Dosage is usually based on factors such as age, weight, and liver and kidney function. But for someone who breaks down a drug quickly, a typical dose may be ineffective. In contrast, someone who breaks down a drug more slowly may need a lower dose to avoid accumulating toxic levels of the drug in the bloodstream. A pharmacogenetic test can help reveal the right dose for individual patients.

The right drug—for depression
Depression can be treated with a variety of different medicines, and it is often time-consuming and difficult to find the drug(s) that works best for each person. In the future, genetic testing may take some of the guesswork out of choosing a drug regimen. These tests are likely to involve analyzing a person’s liver enzymes, especially those in the cytochrome P450 family, which are largely responsible for processing antidepressants.

The right drug—for cardiovascular disease
Statins, the most widely prescribed drugs worldwide, help prevent cardiovascular disease by reducing the level of “bad” cholesterol in the bloodstream. While statins work well for many patients, responses are highly variable and doctors must adjust the dosage for each person.

Researchers have discovered that variants in a number of molecules—including those that break down or transport statins, as well as the statins’ molecular target in the cholesterol production pathway—contribute to the variable response among individuals. Using results of genetic tests, doctors may one day be able to prescribe the right dose from the start and more quickly reduce their patients’ risk of dangerous cardiovascular events such as heart attack and stroke.

For more information on pharmacogenetic testing, contact:

PGx Medical
Individualized Care – Personalized Medicine
405-509-5112
info@pgxmed.com

www.pgxmed.com

Source:  www.nigms.nih.gov